Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 388
Filtrar
1.
Immunohorizons ; 8(4): 339-353, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639570

RESUMO

Helicobacter pylori is a Gram-negative pathogen that colonizes the stomach, induces inflammation, and drives pathological changes in the stomach tissue, including gastric cancer. As the principal cytokine produced by Th17 cells, IL-17 mediates protective immunity against pathogens by inducing the activation and mobilization of neutrophils. Whereas IL-17A is largely produced by lymphocytes, the IL-17 receptor is expressed in epithelial cells, fibroblasts, and hematopoietic cells. Loss of the IL-17RA in mice results in impaired antimicrobial responses to extracellular bacteria. In the context of H. pylori infection, this is compounded by extensive inflammation in Il17ra-/- mice. In this study, Foxa3creIl17rafl/fl (Il17raΔGI-Epi) and Il17rafl/fl (control) mice were used to test the hypothesis that IL-17RA signaling, specifically in epithelial cells, protects against severe inflammation after H. pylori infection. The data indicate that Il17raΔGI-Epi mice develop increased inflammation compared with controls. Despite reduced Pigr expression, levels of IgA increased in the gastric wash, suggesting significant increase in Ag-specific activation of the T follicular helper/B cell axis. Gene expression analysis of stomach tissues indicate that both acute and chronic responses are significantly increased in Il17raΔGI-Epi mice compared with controls. These data suggest that a deficiency of IL-17RA in epithelial cells is sufficient to drive chronic inflammation and hyperactivation of the Th17/T follicular helper/B cell axis but is not required for recruitment of polymorphonuclear neutrophils. Furthermore, the data suggest that fibroblasts can produce chemokines in response to IL-17 and may contribute to H. pylori-induced inflammation through this pathway.


Assuntos
Infecções por Helicobacter , Receptores de Interleucina-17 , Animais , Camundongos , Células Epiteliais/metabolismo , Infecções por Helicobacter/imunologia , Helicobacter pylori , Inflamação/metabolismo , Interleucina-17/metabolismo , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo
2.
BMC Immunol ; 25(1): 20, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515019

RESUMO

BACKGROUND: The human interleukin-17 (IL-17) family comprises IL-17A to IL-17 F; their receptors are IL-17RA to IL-17RE. Evidence revealed that these cytokines can have a tumor-supportive or anti-tumor impact on human malignancies. The purpose of this study was to assess the expression of CXCR2, IL-17RA, and IL-17RC genes at the mRNA level as well as tissue and serum levels of IL-17A, vascular endothelial growth factor (VEGF), and transforming growth factor ß (TGF-ß) in patients with bladder cancer (BC) compared to control. RESULTS: This study showed that gene expression of IL-17RA, IL-17RC, and CXCR2 in the tumoral tissue of BC patients was significantly upregulated compared with normal tissue. The findings disclosed a significant difference in the serum and tissue concentrations of IL-17A, VEGF, and TGF-ß between the patient and the control groups, as well as tumor and normal tissues. CONCLUSION: This study reveals notable dysregulation of CXCR2, IL-17RA, and IL-17RC genes, alongside changes in IL-17A, VEGF, and TGF-ß levels in patients with BC than in controls. These findings indicate their possible involvement in BC development and their potential as diagnostic and therapeutic targets.


Assuntos
Interleucina-17 , Neoplasias da Bexiga Urinária , Humanos , Interleucina-17/genética , Interleucina-17/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , 60489 , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Quimiocinas , Neoplasias da Bexiga Urinária/genética , Fator de Crescimento Transformador beta
3.
JCI Insight ; 9(8)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470486

RESUMO

IL-17C is an epithelial cell-derived proinflammatory cytokine whose transcriptional regulation remains unclear. Analysis of the IL17C promoter region identified TCF4 as putative regulator, and siRNA knockdown of TCF4 in human keratinocytes (KCs) increased IL17C. IL-17C stimulation of KCs (along with IL-17A and TNF-α stimulation) decreased TCF4 and increased NFKBIZ and ZC3H12A expression in an IL-17RA/RE-dependent manner, thus creating a feedback loop. ZC3H12A (MCPIP1/Regnase-1), a transcriptional immune-response regulator, also increased following TCF4 siRNA knockdown, and siRNA knockdown of ZC3H12A decreased NFKBIZ, IL1B, IL36G, CCL20, and CXCL1, revealing a proinflammatory role for ZC3H12A. Examination of lesional skin from the KC-Tie2 inflammatory dermatitis mouse model identified decreases in TCF4 protein concomitant with increases in IL-17C and Zc3h12a that reversed following the genetic elimination of Il17c, Il17ra, and Il17re and improvement in the skin phenotype. Conversely, interference with Tcf4 in KC-Tie2 mouse skin increased Il17c and exacerbated the inflammatory skin phenotype. Together, these findings identify a role for TCF4 in the negative regulation of IL-17C, which, alone and with TNF-α and IL-17A, feed back to decrease TCF4 in an IL-17RA/RE-dependent manner. This loop is further amplified by IL-17C-TCF4 autocrine regulation of ZC3H12A and IL-17C regulation of NFKBIZ to promote self-sustaining skin inflammation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Interleucina-17 , Queratinócitos , Receptores de Interleucina-17 , Ribonucleases , Transdução de Sinais , Fator de Transcrição 4 , Animais , Fator de Transcrição 4/metabolismo , Fator de Transcrição 4/genética , Humanos , Interleucina-17/metabolismo , Interleucina-17/genética , Camundongos , Queratinócitos/metabolismo , Ribonucleases/metabolismo , Ribonucleases/genética , Receptores de Interleucina-17/metabolismo , Receptores de Interleucina-17/genética , Inflamação/metabolismo , Inflamação/genética , Modelos Animais de Doenças , Epiderme/metabolismo , Dermatite/metabolismo , Dermatite/genética , Dermatite/imunologia , Dermatite/patologia , Retroalimentação Fisiológica , Regulação da Expressão Gênica
4.
Biochem Biophys Res Commun ; 701: 149552, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38335918

RESUMO

The Interleukin-17 (IL17) family is a group of cytokines implicated in the etiology of several inflammatory diseases. Interleukin-17 receptor D (IL17RD), also known as Sef (similar expression to fibroblast growth factor) belonging to the family of IL17 receptors, has been shown to modulate IL17A-associated inflammatory phenotypes. The objective of this study was to test the hypothesis that IL17RD promotes endothelial cell activation and consequent leukocyte adhesion. We utilized primary human aortic endothelial cells and demonstrated that RNAi targeting of IL17RD suppressed transcript levels by 83 % compared to non-targeted controls. Further, RNAi knockdown of IL17RD decreased the adhesion of THP-1 monocytic cells onto a monolayer of aortic endothelial cells in response to IL17A. Additionally, we determined that IL17A did not significantly enhance the activation of canonical MAPK and NFκB pathways in endothelial cells, and further did not significantly affect the expression of VCAM-1 and ICAM-1 in aortic endothelial cells, which is contrary to previous findings. We also determined the functional relevance of our findings in vivo by comparing the expression of endothelial VCAM-1 and ICAM-1 and leukocyte infiltration in the aorta in Western diet-fed Il17rd null versus wild-type mice. Our results showed that although Il17rd null mice do not have significant alteration in aortic expression of VCAM-1 and ICAM-1 in endothelial cells, they exhibit decreased accumulation of proinflammatory monocytes and neutrophils, suggesting that endothelial IL17RD induced in vivo myeloid cell accumulation is not dependent on upregulation of VCAM-1 and ICAM-1 expression. We further performed proteomics analysis to identify potential molecular mediators of the IL17A/IL17RD signaling axis. Collectively, our results underscore a critical role for Il17rd in the regulation of aortic myeloid cell infiltration in the context of Western diet feeding.


Assuntos
Células Endoteliais , Molécula 1 de Adesão Intercelular , Humanos , Animais , Camundongos , Molécula 1 de Adesão Intercelular/metabolismo , Células Endoteliais/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Dieta Ocidental , Aorta/metabolismo , Células Mieloides/metabolismo , Monócitos/metabolismo , Adesão Celular , Receptores de Interleucina/metabolismo
5.
J Am Heart Assoc ; 13(3): e032533, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38240234

RESUMO

BACKGROUND: Elevated inflammatory cytokines in the periphery have been identified as active contributors to neuroinflammation and sympathetic overactivity in heart failure (HF). Yet, the exact mechanisms by which these cytokines breach the blood-brain barrier (BBB) to exert their effects on the brain remain elusive. Interleukin 17A has been linked to BBB disruption in various neurologic disorders, and its levels were significantly augmented in circulation and the brain in HF. The present study aimed to determine whether the BBB integrity was compromised within the hypothalamic paraventricular nucleus (PVN), and if so, whether interleukin 17A contributes to BBB disruption in myocardial infarction-induced HF. METHODS AND RESULTS: Male Sprague-Dawley rats underwent coronary artery ligation to induce HF or sham surgery. Some HF rats received bilateral PVN microinjections of an interleukin 17 receptor A small interfering RNA or a scrambled small interfering RNA adeno-associated virus. Four weeks after coronary artery ligation, the permeability of the BBB was evaluated by intracarotid injection of fluorescent dyes (fluorescein isothiocyanate-dextran 10 kDa+rhodamine-dextran 70 kDa). Compared with sham-operated rats, HF rats exhibited an elevated extravasation of fluorescein isothiocyanate-dextran 10 kDa within the PVN but not in the brain cortex. The plasma interleukin 17A levels were positively correlated with fluorescein isothiocyanate 10 kDa extravasation in the PVN. The expression of caveolin-1, a transcytosis marker, was augmented, whereas the expression of tight junction proteins was diminished in HF rats. Interleukin 17 receptor A was identified within the endothelium of PVN microvessels. Treatment with interleukin 17 receptor A small interfering RNA led to a significant attenuation of fluorescein isothiocyanate 10 kDa extravasation in the PVN and reversed expression of caveolin-1 and tight junction-associated proteins in the PVN. CONCLUSIONS: Collectively, these data indicate that BBB permeability within the PVN is enhanced in HF and is likely attributable to increased interleukin 17A/interleukin 17 receptor A signaling in the BBB endothelium, by promoting caveolar transcytosis and degradation of tight junction complexes.


Assuntos
Barreira Hematoencefálica , Fluoresceína-5-Isotiocianato , Interleucina-17 , Infarto do Miocárdio , Núcleo Hipotalâmico Paraventricular , Transdução de Sinais , Animais , Masculino , Ratos , Barreira Hematoencefálica/metabolismo , Caveolina 1/metabolismo , Citocinas/metabolismo , Dextranos/metabolismo , Dextranos/farmacologia , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceínas/metabolismo , Fluoresceínas/farmacologia , Insuficiência Cardíaca , Interleucina-17/metabolismo , Isotiocianatos/metabolismo , Isotiocianatos/farmacologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/patologia , Ratos Sprague-Dawley , Receptores de Interleucina-17/metabolismo , RNA Interferente Pequeno/metabolismo
6.
Environ Pollut ; 342: 123048, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38036089

RESUMO

Biomass exposure is a significant environmental risk factor for COPD, but the underlying mechanisms have not yet been fully elucidated. Inflammatory microenvironment has been shown to drive the development of many chronic diseases. Pollution exposure can cause increased levels of inflammatory factors in the lungs, leading to an inflammatory microenvironment which is prevalent in COPD. Our findings revealed that IL-17F was elevated in COPD, while exposure to biomass led to increased expression of IL-17F in both alveolar epithelial and macrophage cells in mice. Blocking IL-17F could alleviate the lung inflammation induced by seven days of biomass exposure in mice. We employed a transwell co-culture system to simulate the microenvironment and investigate the interactions between MLE-12 and MH-S cells. We demonstrated that anti-IL-17F antibody attenuated the inflammatory responses induced by BRPM2.5 in MLE-12 and MH-S co-cultured with BRPM2.5-MLE-12, which reduced inflammatory changes in microenvironment. We found that IL-17RC, an important receptor for IL-17F, played a key role in the interactions. Knockout of IL-17RC in MH-S resulted in inhibited IL-17F signaling and attenuated inflammatory response after MH-S co-culture with BRPM2.5-MLE-12. Our investigation suggests that BRPM2.5 induces lung epithelial-macrophage interactions via IL-17F/IL-17RC axis regulating the inflammatory response. These results may provide a novel strategy for effective prevention and treatment of biomass-related COPD.


Assuntos
Interleucina-17 , Doença Pulmonar Obstrutiva Crônica , Camundongos , Animais , Receptores de Interleucina-17/metabolismo , Biomassa , Camundongos Knockout , Material Particulado/toxicidade
7.
Biosci Biotechnol Biochem ; 88(2): 147-153, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38031342

RESUMO

This research is based on a Systematic Evolution of Ligands by EXponential enrichment, also referred to as in vitro selection against the extracellular domain of human interleukin-17 receptor A (IL-17RA). Pull-down assay via quantitative polymerase chain reaction and chemiluminescence detection showed that the cloned RNA with the enriched sequence bound to human IL-17RA and inhibited the interaction between IL-17RA and human interleukin-17A (IL-17A). We also revealed that the newly discovered IL-17RA-binding RNA aptamer bound to cellular IL-17RA, inhibited the cellular IL-17RA/IL-17A interaction, and antagonized cellular IL-17A signaling.


Assuntos
Interleucina-17 , Receptores de Interleucina-17 , Humanos , Receptores de Interleucina-17/química , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Interleucina-17/metabolismo , Ligação Proteica
8.
Infect Immun ; 92(1): e0029223, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38014948

RESUMO

Activation of Th17 cell responses, including the production of IL-17A and IL-21, contributes to host defense and inflammatory responses by coordinating adaptive and innate immune responses. IL-17A and IL-17F signal through a multimeric receptor, which includes the IL-17 receptor A (IL-17RA) subunit and the IL-17RC subunit. IL-17RA is expressed by many cell types, and data from previous studies suggest that loss of IL-17 receptor is required to limit immunopathology in the Helicobacter pylori model of infection. Here, an Il17ra-/- mouse was generated on the FVB/n background, and the role of IL-17 signaling in the maintenance of barrier responses to H. pylori was investigated. Generating the Il17ra-/- on the FVB/n background allowed for the examination of responses in the paragastric lymph node and will allow for future investigation into carcinogenesis. While uninfected Il17ra-/- mice do not develop spontaneous gastritis following H. pylori infection, Il17ra-/- mice develop severe gastric inflammation accompanied by lymphoid follicle production and exacerbated production of Th17 cytokines. Increased inflammation in the tissue, increased IgA levels in the lumen, and reduced production of Muc5ac in the corpus correlate with increased H. pylori-induced paragastric lymph node activation. These data suggest that the cross talk between immune cells and epithelial cells regulates mucin production, IgA production, and translocation, impacting the integrity of the gastric mucosa and therefore activating of the adaptive immune response.


Assuntos
Gastrite , Infecções por Helicobacter , Helicobacter pylori , Camundongos , Animais , Interleucina-17/genética , Interleucina-17/metabolismo , Helicobacter pylori/fisiologia , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Mucosa Gástrica/metabolismo , Inflamação/metabolismo , Imunoglobulina A/metabolismo
9.
Sci Rep ; 13(1): 21572, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062130

RESUMO

Osteosarcoma is rare but is the most common bone tumor. Diagnostic tools such as magnetic resonance imaging development of chemotherapeutic agents have increased the survival rate in osteosarcoma patients, although 5-year survival has plateaued at 70%. Thus, development of new treatment approaches is needed. Here, we report that IL-17, a proinflammatory cytokine, increases osteosarcoma mortality in a mouse model with AX osteosarcoma cells. AX cell transplantation into wild-type mice resulted in 100% mortality due to ectopic ossification and multi-organ metastasis. However, AX cell transplantation into IL-17-deficient mice significantly prolonged survival relative to controls. CD4-positive cells adjacent to osteosarcoma cells express IL-17, while osteosarcoma cells express the IL-17 receptor IL-17RA. Although AX cells can undergo osteoblast differentiation, as can patient osteosarcoma cells, IL-17 significantly inhibited that differentiation, indicating that IL-17 maintains AX cells in the undifferentiated state seen in malignant tumors. By contrast, IL-17RA-deficient mice transplanted with AX cells showed survival comparable to wild-type mice transplanted with AX cells. Biopsy specimens collected from osteosarcoma patients showed higher expression of IL-17RA compared to IL-17. These findings suggest that IL-17 is essential to maintain osteosarcoma cells in an undifferentiated state and could be a therapeutic target for suppressing tumorigenesis.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Camundongos , Animais , Receptores de Interleucina-17/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Osteossarcoma/patologia , Diferenciação Celular , Neoplasias Ósseas/patologia
10.
JCI Insight ; 8(21)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37937643

RESUMO

Chronic lung allograft dysfunction (CLAD) is a major complication after lung transplantation that results from a complex interplay of innate inflammatory and alloimmune factors, culminating in parenchymal and/or obliterative airway fibrosis. Excessive IL-17A signaling and chronic inflammation have been recognized as key factors in these pathological processes. Herein, we developed a model of repeated airway inflammation in mouse minor alloantigen-mismatched single-lung transplantation. Repeated intratracheal LPS instillations augmented pulmonary IL-17A expression. LPS also increased acute rejection, airway epithelial damage, and obliterative airway fibrosis, similar to human explanted lung allografts with antecedent episodes of airway infection. We then investigated the role of donor and recipient IL-17 receptor A (IL-17RA) in this context. Donor IL-17RA deficiency significantly attenuated acute rejection and CLAD features, whereas recipient IL-17RA deficiency only slightly reduced airway obliteration in LPS allografts. IL-17RA immunofluorescence positive staining was greater in human CLAD lungs compared with control human lung specimens, with localization to fibroblasts and myofibroblasts, which was also seen in mouse LPS allografts. Taken together, repeated airway inflammation after lung transplantation caused local airway epithelial damage, with persistent elevation of IL-17A and IL-17RA expression and particular involvement of IL-17RA on donor structural cells in development of fibrosis.


Assuntos
Fibrose Pulmonar , Infecções Respiratórias , Camundongos , Humanos , Animais , Interleucina-17/metabolismo , Receptores de Interleucina-17/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Fibrose Pulmonar/patologia , Pulmão/patologia , Inflamação/metabolismo , Fibrose , Infecções Respiratórias/metabolismo , Aloenxertos
11.
Oncoimmunology ; 12(1): 2261326, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808403

RESUMO

IL-17 immune responses in cancer are controversial, with both tumor-promoting and tumor-repressing effects observed. To clarify the role of IL-17 signaling in cancer progression, we used syngeneic tumor models from different tissue origins. We found that deficiencies in host IL-17RA or IL-17A/F expression had varying effects on the in vivo growth of different solid tumors including melanoma, sarcoma, lymphoma, and leukemia. In each tumor type, the absence of IL-17 led to changes in the expression of mediators associated with inflammation and metastasis in the tumor microenvironment. Furthermore, IL-17 signaling deficiencies in the hosts resulted in decreased anti-tumor CD8+ T cell immunity and caused tumor-specific changes in several lymphoid cell populations. Our findings were associated with distinct patterns of IL-17A/F cytokine and receptor subunit expression in the injected tumor cell lines. These patterns affected tumor cell responsiveness to IL-17 and downstream intracellular signaling, leading to divergent effects on cancer progression. Additionally, we identified IL-17RC as a critical determinant of the IL-17-mediated response in tumor cells and a potential biomarker for IL-17 signaling effects in tumor progression. Our study offers insight into the molecular mechanisms underlying IL-17 activities in cancer and lays the groundwork for developing personalized immunotherapies.


Assuntos
Neoplasias , Receptores de Interleucina-17 , Humanos , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Interleucina-17 , Transdução de Sinais , Linfócitos T CD8-Positivos , Inflamação , Neoplasias/genética
12.
Front Immunol ; 14: 1208200, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37691956

RESUMO

Introduction: Ets1 is a lymphoid-enriched transcription factor that regulates B- and Tcell functions in development and disease. Mice that lack Ets1 (Ets1 KO) develop spontaneous autoimmune disease with high levels of autoantibodies. Naïve CD4 + T cells isolated from Ets1 KO mice differentiate more readily to Th17 cells that secrete IL-17, a cytokine implicated in autoimmune disease pathogenesis. To determine if increased IL-17 production contributes to the development of autoimmunity in Ets1 KO mice, we crossed Ets1 KO mice to mice lacking the IL-17 receptor A subunit (IL17RA KO) to generate double knockout (DKO) mice. Methods: In this study, the status of the immune system of DKO and control mice was assessed utilizing ELISA, ELISpot, immunofluorescent microscopy, and flow cytometric analysis of the spleen, lymph node, skin. The transcriptome of ventral neck skin was analyzed through RNA sequencing. S. aureus clearance kinetics in in exogenously infected mice was conducted using bioluminescent S. aureus and tracked using an IVIS imaging experimental scheme. Results: We found that the absence of IL17RA signaling did not prevent or ameliorate the autoimmune phenotype of Ets1 KO mice but rather that DKO animals exhibited worse symptoms with striking increases in activated B cells and secreted autoantibodies. This was correlated with a prominent increase in the numbers of T follicular helper (Tfh) cells. In addition to the autoimmune phenotype, DKO mice also showed signs of immunodeficiency and developed spontaneous skin lesions colonized by Staphylococcus xylosus. When DKO mice were experimentally infected with Staphylococcus aureus, they were unable to clear the bacteria, suggesting a general immunodeficiency to staphylococcal species. γδ T cells are important for the control of skin staphylococcal infections. We found that mice lacking Ets1 have a complete deficiency of the γδ T-cell subset dendritic epidermal T cells (DETCs), which are involved in skin woundhealing responses, but normal numbers of other skin γδ T cells. To determine if loss of DETC combined with impaired IL-17 signaling might promote susceptibility to staph infection, we depleted DETC from IL17RA KO mice and found that the combined loss of DETC and impaired IL-17 signaling leads to an impaired clearance of the infection. Conclusions: Our studies suggest that loss of IL-17 signaling can result in enhanced autoimmunity in Ets1 deficient autoimmune-prone mice. In addition, defects in wound healing, such as that caused by loss of DETC, can cooperate with impaired IL-17 responses to lead to increased susceptibility to skin staph infections.


Assuntos
Doenças Autoimunes , Proteína Proto-Oncogênica c-ets-1 , Receptores de Interleucina-17 , Infecções Estafilocócicas , Animais , Camundongos , Autoanticorpos , Doenças Autoimunes/genética , Autoimunidade , Interleucina-17 , Receptores de Interleucina-17/metabolismo , Staphylococcus aureus , Proteína Proto-Oncogênica c-ets-1/metabolismo
13.
J Mol Recognit ; 36(8): e3045, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37415317

RESUMO

Interleukin-17A (IL-17A) is a pro-inflammatory cytokine implicated in diverse autoimmune and inflammatory disorders such as psoriasis and Kawasaki disease. Mature IL-17A is a homodimer that binds to the extracellular type-III fibronectin D1:D2-dual domain of its cognate IL-17 receptor A (IL-17RA). In this study, we systematically examined the structural basis, thermodynamics property, and dynamics behavior of IL-17RA/IL-17A interaction and computationally identified two continuous hotspot regions separately from different monomers of IL-17A homodimer that contribute significantly to the interaction, namely I-shaped and U-shaped segments, thus rendered as a peptide-mediated protein-protein interaction (PmPPI). Self-inhibitory peptides (SIPs) are derived from the two segments to disrupt IL-17RA/IL-17A interaction by competitively rebinding to the IL-17A-binding pocket on IL-17RA surface, which, however, only have a weak affinity and low specificity for IL-17RA due to lack of the context support of intact IL-17A protein, thus exhibiting a large flexibility and intrinsic disorder when splitting from the protein context and incurring a considerable entropy penalty when rebinding to IL-17RA. The U-shaped segment is further extended, mutated and stapled by a disulfide bridge across its two strands to obtain a number of double-stranded cyclic SIPs, which are partially ordered and conformationally similar to their native status at IL-17RA/IL-17A complex interface. Experimental fluorescence polarization assays substantiate that the stapling can moderately or considerably improve the binding affinity of U-shaped segment-derived peptides by 2-5-fold. In addition, computational structural modeling also reveals that the stapled peptides can bind in a similar mode with the native crystal conformation of U-shaped segment in IL-17RA pocket, where the disulfide bridge is out of the pocket for avoiding intervene of the peptide binding.


Assuntos
Interleucina-17 , Receptores de Interleucina-17 , Interleucina-17/química , Interleucina-17/metabolismo , Interleucina-17/farmacologia , Receptores de Interleucina-17/química , Receptores de Interleucina-17/metabolismo , Peptídeos/química , Modelos Moleculares , Ligação Proteica
14.
J Immunol ; 211(2): 252-260, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37265402

RESUMO

SARS-CoV-2 has caused an estimated 7 million deaths worldwide to date. A secreted SARS-CoV-2 accessory protein, known as open reading frame 8 (ORF8), elicits inflammatory pulmonary cytokine responses and is associated with disease severity in COVID-19 patients. Recent reports proposed that ORF8 mediates downstream signals in macrophages and monocytes through the IL-17 receptor complex (IL-17RA, IL-17RC). However, generally IL-17 signals are found to be restricted to the nonhematopoietic compartment, thought to be due to rate-limiting expression of IL-17RC. Accordingly, we revisited the capacity of IL-17 and ORF8 to induce cytokine gene expression in mouse and human macrophages and monocytes. In SARS-CoV-2-infected human and mouse lungs, IL17RC mRNA was undetectable in monocyte/macrophage populations. In cultured mouse and human monocytes and macrophages, ORF8 but not IL-17 led to elevated expression of target cytokines. ORF8-induced signaling was fully preserved in the presence of anti-IL-17RA/RC neutralizing Abs and in Il17ra-/- cells. ORF8 signaling was also operative in Il1r1-/- bone marrow-derived macrophages. However, the TLR/IL-1R family adaptor MyD88, which is dispensable for IL-17R signaling, was required for ORF8 activity yet MyD88 is not required for IL-17 signaling. Thus, we conclude that ORF8 transduces inflammatory signaling in monocytes and macrophages via MyD88 independently of the IL-17R.


Assuntos
COVID-19 , Fases de Leitura Aberta , SARS-CoV-2 , Animais , Humanos , Camundongos , COVID-19/imunologia , COVID-19/virologia , Citocinas/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , SARS-CoV-2/metabolismo
15.
EMBO J ; 42(5): e112351, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36762436

RESUMO

Human cytomegalovirus (CMV) is a ubiquitously distributed pathogen whose rodent counterparts such as mouse and rat CMV serve as common infection models. Here, we conducted global proteome profiling of rat CMV-infected cells and uncovered a pronounced loss of the transcription factor STAT2, which is crucial for antiviral interferon signalling. Via deletion mutagenesis, we found that the viral protein E27 is required for CMV-induced STAT2 depletion. Cellular and in vitro analyses showed that E27 exploits host-cell Cullin4-RING ubiquitin ligase (CRL4) complexes to induce poly-ubiquitylation and proteasomal degradation of STAT2. Cryo-electron microscopy revealed how E27 mimics molecular surface properties of cellular CRL4 substrate receptors called DCAFs (DDB1- and Cullin4-associated factors), thereby displacing them from the catalytic core of CRL4. Moreover, structural analyses showed that E27 recruits STAT2 through a bipartite binding interface, which partially overlaps with the IRF9 binding site. Structure-based mutations in M27, the murine CMV homologue of E27, impair the interferon-suppressing capacity and virus replication in mouse models, supporting the conserved importance of DCAF mimicry for CMV immune evasion.


Assuntos
Infecções por Citomegalovirus , Muromegalovirus , Animais , Humanos , Camundongos , Ratos , Microscopia Crioeletrônica , Infecções por Citomegalovirus/genética , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Interferons/metabolismo , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Receptores de Interleucina-17/metabolismo
16.
Gastric Cancer ; 26(1): 82-94, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36125689

RESUMO

BACKGROUND: Gastric cancer (GC) is a common malignancy worldwide, with a major attribution to Helicobacter pylori. Interleukin (IL)-17A has been reported to be up-regulated in serum and tumor of GC patients, but the precise mechanisms underlying its involvement in gastric tumorigenesis are yet to be established. Here, we investigated the roles of IL-17A in the pathogenesis of H. pylori-induced GC. METHODS: GC was induced in IL-17A knockout (KO) and wild-type (WT) mice via N-methyl-N-nitrosourea (MNU) treatment and H. pylori infection. At 50 weeks after treatment, gastric tissues were examined by histopathology, immunohistochemistry, and immunoblot analyses. In vitro experiments on the human GC cell lines were additionally performed to elucidate the underlying mechanisms. RESULTS: Deletion of IL-17A suppressed MNU and H. pylori-induced gastric tumor development accompanied by a decrease in gastric epithelial cell growth, oxidative stress, and expression of gastric epithelial stem cells markers. In AGS cells, recombinant human IL-17A (rhIL-17A) inhibited apoptosis and G1/S phase transition arrest while promoting reactive oxygen species production, sphere formation ability of cancer stem cells (CSC), and expression of stemness-related genes. In addition, rhIL-17A induced expression of IL-17RC, leading to NF-κB activation and increased NADPH oxidase 1 (NOX1) levels. Inhibition of NOX1 with GKT136901 attenuated rhIL-17A-mediated elevation of GC cell growth, ROS generation, and CSC stemness. Clinically, IL-17RC expressions were significantly upregulated in human GC compared with normal gastric tissues. CONCLUSION: Our results suggest that IL-17A promotes gastric carcinogenesis, in part, by regulating IL-17RC/NF-κB/NOX1 pathway, supporting its potential as a target in human GC therapy.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Animais , Humanos , Camundongos , Carcinogênese/metabolismo , Células Epiteliais/metabolismo , Mucosa Gástrica/patologia , Infecções por Helicobacter/complicações , Infecções por Helicobacter/patologia , Helicobacter pylori/genética , Interleucina-17/metabolismo , NF-kappa B/metabolismo , Neoplasias Gástricas/patologia , Receptores de Interleucina-17/metabolismo
17.
Mediators Inflamm ; 2022: 9923204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36274974

RESUMO

Sepsis represents a syndrome of systemic inflammatory response, which is mostly a result of infection with various pathogenic microorganisms, characterized by an uncontrolled infection response of the organism leading to life-threatening organ dysfunction. Long noncoding RNA (lncRNA), as competing endogenous RNA, can affect the binding of microRNA (miRNA) to mRNA, thus influencing the development of sepsis. In this study, based on transcriptome data from GEO database, we screened differentially expressed lncRNAs and constructed lncRNA-miRNA-mRNA network. And pathway IL-17RA-1/miR-7847-3p/protein kinase C gamma (PRKCG) coexpression network was successfully sorted out. The effect of this network on LPS-induced sepsis model in THP-1 cells was also verified by CCK-8, scratch, ELISA, Western blot, and qRT-PCR assays. Corresponding binding sites of miR-7847-3p to IL-17RA-1 and miR-7847-3p to PRKCG were verified using dual luciferase gene reporter assays, respectively. Compared with control, si-IL-17RA-1 significantly inhibited the cell viability and migration ability of THP-1, and levels of proinflammatory factors IL-6, IL-1ß, and TNF-α secreted were markedly decreased, and the expression of IL-17RA-1, PRKCG, p-MEKK1, and p-JNK were markedly reduced. In addition, IL-17RA-1 could target binding to miR-7847-3p and inhibit its expression, and miR-7847-3p could also bind to PRKCG. Our experiments demonstrate that IL17-RA-1 attenuates the sepsis response through the miR-7847-3p/MAPK pathway, and this competing endogenous RNA (ceRNA) network may be a potential approach to predict and combat sepsis.


Assuntos
MicroRNAs , Proteína Quinase C , RNA Longo não Codificante , Receptores de Interleucina-17 , Sepse , Humanos , Interleucina-6 , Lipopolissacarídeos/metabolismo , Luciferases/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , Sepse/metabolismo , Transdução de Sinais , Sincalida , Fator de Necrose Tumoral alfa , Receptores de Interleucina-17/metabolismo
18.
Cell Rep ; 41(3): 111489, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36260993

RESUMO

Signaling through innate immune receptors such as the Toll-like receptor (TLR)/interleukin-1 receptor (IL-1R) superfamily proceeds via the assembly of large membrane-proximal complexes or "signalosomes." Although structurally distinct, the IL-17 receptor family triggers cellular responses that are typical of innate immune receptors. The IL-17RA receptor subunit is shared by several members of the IL-17 family. Using a combination of crystallographic, biophysical, and mutational studies, we show that IL-17A, IL-17F, and IL-17A/F induce IL-17RA dimerization. X-ray analysis of the heteromeric IL-17A complex with the extracellular domains of the IL-17RA and IL-17RC receptors reveals that cytokine-induced IL-17RA dimerization leads to the formation of a 2:2:2 hexameric signaling assembly. Furthermore, we demonstrate that the formation of the IL-17 signalosome potentiates IL-17-induced IL-36γ and CXCL1 mRNA expression in human keratinocytes, compared with a dimerization-defective IL-17RA variant.


Assuntos
Interleucina-17 , Receptores de Interleucina-17 , Humanos , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Interleucina-17/metabolismo , Dimerização , Citocinas/metabolismo , RNA Mensageiro/metabolismo , Receptores de Interleucina-1/metabolismo
19.
Nat Immunol ; 23(11): 1644-1652, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36271145

RESUMO

Interleukin-17A (IL-17A) is a key mediator of protective immunity to yeast and bacterial infections but also drives the pathogenesis of several autoimmune diseases, such as psoriasis or psoriatic arthritis. Here we show that the tetra-transmembrane protein CMTM4 is a subunit of the IL-17 receptor (IL-17R). CMTM4 constitutively associated with IL-17R subunit C to mediate its stability, glycosylation and plasma membrane localization. Both mouse and human cell lines deficient in CMTM4 were largely unresponsive to IL-17A, due to their inability to assemble the IL-17R signaling complex. Accordingly, CMTM4-deficient mice had a severe defect in the recruitment of immune cells following IL-17A administration and were largely resistant to experimental psoriasis, but not to experimental autoimmune encephalomyelitis. Collectively, our data identified CMTM4 as an essential component of IL-17R and a potential therapeutic target for treating IL-17-mediated autoimmune diseases.


Assuntos
Artrite Psoriásica , Encefalomielite Autoimune Experimental , Psoríase , Humanos , Camundongos , Animais , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Interleucina-17/metabolismo , Encefalomielite Autoimune Experimental/genética , Proteínas com Domínio MARVEL/genética
20.
Cell Rep ; 41(4): 111555, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36288706

RESUMO

Upregulation of interleukin-17 receptor B (IL-17RB) is known to be oncogenic, while other IL-17 receptors and ligands are generally involved in pro-inflammatory pathways. We identify a mouse neutralizing monoclonal antibody (mAb) D9, which blocks the IL-17RB/IL-17B pathway and inhibits pancreatic tumorigenesis in an orthotopic mouse model. The X-ray crystal structure of the IL-17RB ectodomain in complex with its neutralizing antibody D9 shows that D9 binds to a predicted ligand binding interface and engages with the A'-A loop of IL-17RB fibronectin III domain 1 in a unique conformational state. This structure also provides important paratope information to guide the design of antibody humanization and affinity maturation of D9, resulting in a humanized 1B12 antibody with marginal affinity loss and effective neutralization of IL-17B/IL-17RB signaling to impede tumorigenesis in a mouse xenograft model.


Assuntos
Interleucina-17 , Receptores de Interleucina-17 , Humanos , Camundongos , Animais , Receptores de Interleucina-17/metabolismo , Interleucina-17/metabolismo , Fibronectinas/metabolismo , Ligantes , Anticorpos Neutralizantes/metabolismo , Regulação Neoplásica da Expressão Gênica , Carcinogênese , Anticorpos Monoclonais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...